Monday, 28 December 2020

Both science and engineering will be required to make quantum computing a reality

 constantly fighting decoherence, seeking new ways to protect the qubits from environmental noise. His research mission is to iron out these technological kinks that could enable the fabrication of reliable superconducting quantum computers. “I like to do fundamental research, but I like to do it in a way that’s practical and scalable,” Oliver says. “Quantum engineering bridges quantum science and conventional engineering. Both science and engineering will be required to make quantum computing a reality.”

Another solution to the challenge of manipulating qubits while protecting them against decoherence is a trapped ion quantum computer, which uses individual atoms — and their natural quantum mechanical behavior — as qubits. Atoms make for simpler qubits than supercooled circuits, according to Chiaverini. “Luckily, I don’t have to engineer the qubits themselves,” he says. “Nature gives me these really nice difference between computer engineering and computer science. But the key is engineering the system and getting ahold of those things.”

Chiaverini’s qubits are charged ions, rather than neutral atoms, because they’re easier to contain and localize. He uses lasers to control the ion’s quantum behavior. “We’re manipulating the state of an electron. We’re promoting one of the electrons in the atom to a higher energy level or a lower energy level,” he says.


1 comment:

Why it's the ideal opportunity for telecoms to zero in on clients

 Brought together computerized stages can help telecoms players incorporate siloed frameworks, robotize basic administrations and improve cl...